博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
2018.10.24-dtoj-3984 玩具(toy)
阅读量:5772 次
发布时间:2019-06-18

本文共 2269 字,大约阅读时间需要 7 分钟。

题目描述:

这个故事发生在很久以前,在 IcePrincess_1968 和 IcePrince_1968 都还在上幼儿园的时候。

IcePrince_1968 最近迷上了一种玩具,这种玩具中有两种零件:圆球和棍子。棍子的两头可以插在两个圆球上的各一个空洞中,从而将两个圆球连接起来。为了保证玩具的娱乐性,任意一个圆球上的空洞个数总是多于玩具套装中的棍子数。你可以认为圆球是没有体积的,所有棍子的长度均为 1。

IcePrince_1968 喜欢这样玩这种玩具:他先摸出玩具袋里的一个圆球放在地上,然后重复下面的操作 n-1 次:每次从袋中取出一个圆球和一根棍子,然后等概率的从地上的圆球中选择一个,将该圆球和选择的圆球用棍子连起来,使得新的圆球在选中圆球的正上方。

IcePrince_1968 对自己搭出的艺术品很满意,便决定把这个物品送给 IcePrincess_1968 作为生日礼物。然而生日礼物是需要包装的,因为默认圆球没有体积,所以 IcePrince_1968 不用考虑包装盒的长和宽,但是包装盒的高是需要确定的,这里我们假设 IcePrince_1968 是一个非常节俭的孩子,所以包装盒的高总是等于艺术品的高度。IcePrince_1968 想知道自己需要的包装盒的高的期望对质数 p 取模后的值,但他还在上幼儿园,怎么会算呢,于是就请你来帮助他。

输入:

输入数据仅一行,包含两个正整数 n,p,表示最终的艺术品中圆球的个数和模数 p。

输出:

输入文件仅一行,一个正整数,表示包装盒的高的期望对质数 p 取模后的值。

数据范围:

对于 30%的数据,满足 n<=10,p<=1,000,007;

对于 50%的数据,满足 n<=20;

对于 70%的数据,满足 n<=50;

对于 100%的数据,满足 n<=200,p<=1,000,000,007,p 是质数。

算法标签:期望DP

(一下思路几乎都摘自,出题人的题解,因为本蒟蒻实在是不太会写期望dp....考场连题都没理解透哭了...)

思路:

预处理dp[i][j]表示i个点的森林,有j个点在第一棵树的概率,转移考虑第i个点是否在第一棵树中,我们有状态转移方程:

          dp[i][j] = dp[i − 1][j − 1] ∗ (j − 1) ∗ inv[i] + dp[i − 1][j] ∗ (i − j) ∗ inv[i]

考虑修改算法三中状态的含义,令f[i][j]表示有i个点的树,深度不超过j的概率,g[i][j]表示有i个点的森林,深度不超过j的概率,f[i][j]直接从g[i-1][j-1]转移

来;g[i][j]考虑枚举第一棵树的大小k,从一棵树和一个森林转移来,同时还要乘上第一棵子树大小为k的概率,我们有状态转移方程:

          g[i][j] = f[k][j] ∗ g[i − k][j] ∗ dp[i][k]

最后只要用f[n][j]-f[n][j-1]就可以得到深度为j的树的概率

(初始化看代码把)

以下代码:

#include
#define il inline#define LL long long#define _(d) while(d(isdigit(ch=getchar())))using namespace std;const int N=205;int n,p;LL dp[N][N],inv[N],g[N][N],f[N][N],ans;il int read(){
int x,f=1;char ch;_(!)ch=='-'?f=-1:f;x=ch^48;_()x=(x<<1)+(x<<3)+(ch^48);return f*x;}il LL ksm(LL a,int y){LL b=1;while(y){
if(y&1)b=b*a%p;a=a*a%p;y>>=1;}return b;}int main(){ n=read();p=read();dp[1][1]=1;for(int i=1;i<=n;i++)inv[i]=ksm(i,p-2); for(int i=2;i<=n;i++)for(int j=1;j<=i;j++) dp[i][j]=(dp[i-1][j-1]*(LL)(j-1)%p*inv[i]%p+dp[i-1][j]*(LL)(i-j)%p*inv[i]%p)%p; for(int i=0;i<=n;i++)g[0][i]=1;f[1][0]=1; for(int i=1;i<=n;i++)for(int j=0;j<=n;j++){ if(j>0)f[i][j]=g[i-1][j-1]; for(int k=1;k<=i;k++){ g[i][j]=(g[i][j]+f[k][j]*g[i-k][j]%p*dp[i][k]%p)%p; } } for(int i=1;i<=n;i++)ans=(ans+(LL)i*(f[n][i]-f[n][i-1]+p)%p)%p;printf("%d\n",ans); return 0;}
View Code

 

转载于:https://www.cnblogs.com/Jessie-/p/9843539.html

你可能感兴趣的文章
Java判断是否为垃圾_Java GC如何判断对象是否为垃圾
查看>>
多项式前k项和java_多项式朴素贝叶斯softmax改变
查看>>
java数组只能交换0下标和n_编程练习-只用0交换排序数组
查看>>
OracleLinux安装说明
查看>>
标准与扩展ACL 、 命名ACL 、 总结和答疑
查看>>
使用@media实现IE hack的方法
查看>>
oracle体系结构
查看>>
Microsoft Exchange Server 2010与Office 365混合部署升级到Exchange Server 2016混合部署汇总...
查看>>
Proxy服务器配置_Squid
查看>>
【SDN】Openflow协议中对LLDP算法的理解--如何判断非OF区域的存在
查看>>
纯DIV+CSS简单实现Tab选项卡左右切换效果
查看>>
Centos7同时运行多个Tomcat
查看>>
使用CocoaPods过程中的几个问题
查看>>
Spring boot 整合CXF webservice 全部被拦截的问题
查看>>
Pinpoint跨节点统计失败
查看>>
机房带宽暴涨问题分析及解决方法
查看>>
XP 安装ORACLE
查看>>
八、 vSphere 6.7 U1(八):分布式交换机配置(vMotion迁移网段)
查看>>
[转载] 中华典故故事(孙刚)——19 万岁
查看>>
php5编译安装常见错误和解决办法集锦
查看>>